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Abstract. Balance equations of hot-carrier transport have recently been developed for electrons
in an arbitrary energy band in crossed electric and magnetic fields. It is shown that these
equations provide a very comvenient tool to deal with semiclassical magneto-hot-electron
transport in non-parabolic systems. As an example, Hall factors of narrow-gap semiconductors
with Kane band structures are obtained by directly caleulating the y-coefficients in the equations,
The predictions, which are sensitive to band non-paraboticity, are compared with an earlier
experiment and Monte Carlo analysis.

The Lei-Ting balance equation approach [1] has been shown to be a useful tool for studying
electron transport in three- and guasi-two-dimensional semiconductor systems [2-11]. It
provides a much more tractable method to analyse carrier conduction under the influence
of crossed magnetic and electric fields than direct solution of the Boltzmann equation or
use of the Kubo formula [2, 10]. Although the original balance equations were developed
for electrons moving in a parabolic band, they have recently been extended to systems with
a general energy dispersion in an electric field [12] and in crossed magnetic and electric
fields [13]. The purpose of this letter is to point out that these newly extended balance
equations provide a very convenient tool to deal with semiclassical magneto-hot-electron
transport in a non-parabolic system. As an example, we apply them to calculate the Hall
factor of narrow-gap semiconductors with Kane band structure.

Consider N interacting electrons moving within an isotropic, non-parabolic Kane band
[15]:

e(k) = _;;E[(I + dak?2m) 12 — 1] (D

where k is the wavevector, m is the electron effective mass at the conduction band bottom
of the narrow-gap semiconductor, and

a= (A —mim @
&
is the non-parabolicity coefficient; £, being the energy gap between the conduction and
valence bands.
In the balance equation method the transport state of a many-electron system under the
influence of an electric field in the x—y plane, E = (E,, E,,0), and a magnetic field in
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the z-direction, B = (0, 0, B), is characterized by a centre-of-mass momentum Fy = Np,,
P4 = (px, Py, 0), and an electron temperature 7,. The average velocity of the centre of
mass, or the average drift velocity of electrons, vg = (v, vy, 0), is given by

2
v =D, Velk)f (et —pa), T.) 3)
k

where f(g, T.) = 1/lexp(e — 1)/ T + 1] is the Fermi function at temperature T, with @
being the chemical potential to be determined by the total number of carriers:

N=2 Z Flek), To). @
k

The centre of mass is a single particle, having charge Ne and inverse effective mass tensor
K/N, Ky = 1/my; (i, j ==x,v,2), given by

2
=~ E V - Ve(k) felk — pa), To). (5)
k

In addition, to describe the centre-of-mass motion in this crossed magnetic and electric
field configuration, we need four more dimensionless coefficients, ¥y xz., ¥x, yys ¥x, 2ys ¥y, 2y
definedby (a, b, c=x, ¥)

row

(sasbc}
=& 6
Va, bc (3; ) (Sbc) (6)
Here a; = de(k)/ok,, f::b = 8%s(k) /0%, 8%, and the bracket {...) stands for the average
2
(o = 2 F ek —P0), T). Q)
k

The equations of motion of the centre of mass in crossed magnetic and electric fields take
the form [14]

dv. eE: eE, eBu, eBu,

ke — A 8
dt  m, + ms, * mr, 0 m, Veay T A ®
dv eE eE ¢Buv eBv
T e e o Yy T e Ve T Ay ©
e m3,  omy, o omy, Myy

These two equations, together with the energy balance equation
dh
d—: =eE,vu; +eEyuy — W (10

form a complete set of equations for the determination of parameters p., py and T, and
then all the major physical quantities (such as the drift velocities v, and vy} of transport
in crossed magnetic and electric fields. In the above equations f. is the average electron
energy, A = (Ag, Ay, 0) is the frictional acceleration due to impurity (4;) and phonon
(Ap) scatterings, and W is the energy-loss rate per carrier from the electron system to the
phonon system [14].

Note that when both momentum components p. and p, (thus both drift velocity
components v; and v,) are not zero, the non-diagonal elements of the inverse effective
mass tensor, 1 /m;‘y and 1 /m;x, are finite. However, choosing the x-axis to be the velocity
direction, wqg = (v4,0,0) and py = (pg,0,0), we have 1/m}, = 1/m}, = 0, and the
steady-state force balance equations can be reduced to

ek,

X 4 A =0 an
XX
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ek eBuyy
m*-‘“ — Yoy = 0. (12)
had Yy

This set of equations facilitates determination of the steady-state Hall resistivity under hot-
electron conduction. Since the current density (in the x-direction) is given by

Jx = nevy (13}

where n is the electron number density and e is the electron charge. The (non-linear)
longitudinal resistivity, defined as p., = E;/js, is obtained from equation (11):
puy = —Taxdx : (14)
- netyy
On the other hand, the electric field along the y-direction is determined by equation (12):
Ey = Bugyr,yy. (13

This yields the non-linear transverse (Hall) resistivity

E
pr=2=2Y2p _ (16)
Jx ne
and the Hall coefficient in this configuration
Ry = 22 {17)
ne

or the Hall factor

Y = Vayy- (18)
Apparently, it is independent of the direction of the current flow for this isotropic Kane
band. However, in addition to the energy dispersion of the system, the Hall factor depends
on the centre-of-mass momentum p; and the electron temperature T, and thus depends on
the applied electric field, the scatterings in the system, and the lattice temperature, as well as
the magnetic field. In a parabolic band, ¥V - Ve(k) = Z/m (constant), all the y-coefficients
defined by equation (6), and thus the Hall factor y, are unity under both linear and non-
linear transport for an arbitrary electron density at low and high temperatures. Therefore,
any deviation of y from unity must result from non-parabolicity.

To see how the Hall factor changes with temperature, we plot in figures1 and 2 the
weak electric field (zg ~ Q) ¥ as a function of electron temperature 7, for non-parabolic
Kane bands with different non-parabolicity coefficient and band bottom effective mass for
varying electron density. Figurel (@ = 0.613eV~! and m = 0.067m,) corresponds to an
n-GaAs Kane band. Figure2 (x = 4.32eV~! and m = 0.0138m,) comresponds to an n-InSh
Kane band. For comparison we also show the corresponding y for the respective Kane
band with @ = 0.01eV~! at n = 2 x 10" cm™3 (dashed line in each figure). Such a weak
non-parabolicity implies that it represents an almost parabolic system. Indeed, for this case,
¥ 2= 1 except in the highest-temperature region. In strictly parabolic bands, of course, ¥ =1
is independent of temperatare. Since the deviation of a Kane band from the comresponding
parabolic band is proportional to the square of the wavevector, k, the non-parabolic effect
should appear to be stronger when higher wavevector states are occupied, i.e. at higher
electron density or at higher electron temperature. For sufficiently low electron density
and sufficiently low electron temperature a Kane band should behave parabolically. This
is indeed the case, as can be seen in figures 1 and 2, where for the lowest electron density
shown in these figures, n = 2 x 10" em™3, the value of 3 always approaches a limit very
close to unity.
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Figure 1. Temperature dependence of the Hall factor y of an electron system with n-GaAs Kane
band (¢ = 0.613eV~! and m = 0.067m,), having different electron densities #. The dashed
curve indicates the corresponding 3 for a Kane band with ¢ = 0.0F eV~ and m = 0.067m, at
n=2x 104 em3.
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Figure 2. Temperamre dependence of the Hall factor y of an electron system with n-InSb Kane
band (@ = 4.32eV~! and m = 0.0138m,), having different electron densities n. The dashed
curve indicates the corresponding 1 for a Kane band with @ = 0.01eV~! and m = 0.0138m,
atn =2 x 10%em>.

The Hall factor, ¥, introduced here depends on the momentum shift py, thus y changes
with changing the strength of the current flow in the system. For convenience the momentum
shift will be representated by a dimensionless quantity

2
2=+ =Ppa (19)
m

In figures 3 and 4 we plot the calculated y as a function of electron temperature T, for
several different values of z4 ranging from 0-5 for an n-InAs Kane band (@ = 2.73eV~!
and m = 0.0138m,) at electron density n = 1 x 10° em™3 (figure 3) and » = 2 3% 10" cm 3
(figure 4).



Letter to the Editor L4635

Lip

10k

0 w=3

sk .
- z4=
07 z=1

esF =0 g5

i n=1x10%cm’®
%5 Kane band: ¢=273/eV m=0022m,
04 10 106 1060 10000

Te (X)

Figure 3. Calculated Hall factor  as a function of electron temperature T at different given
momentum shift: zz = 0, 0.5, 1.0, 2.0, 3.0 and 5.0, for an n-InAs Kane band (& = 2.73¢V=!
and m = 0.0138m,) with electron density n = 1 x 10¥ em™3,
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Fipure 4. Calculated Hall factor 3 as a function of electron temperature T, at different given
momentum shift: zz =0, 0.5, 1.0, 2.0, 3.0 and 5.0, for an n-InAs Kane band (& = 2.73eV "1
and = 0.0138m.) with electron density n = 2 x 104 em—3,

There were many experimental and theoretical investigations on hot-electron
galvanomagnetic conductions in narrow-gap semiconductors. As examples we would like
to mention the experimental measurement of Alberga [15] and the Monte Carlo calculation
of Warmenbol et @l [16] on the Hall effect of n-type InSb. Both the experiment and the
theory report a Hall factor decreasing by about 10% with increasing the applied electric
field from 10 V cm™! to 400V cm~!. The temperature dependence of y exhibited in the
n =2 x 10 em™? curve in figure2 is in agreement with this finding. As a matter of fact,
numerical analysis of the steady-state balance equations determines that at an applied field
of 400V cm™' the momentum shift z; is less than 0.1, for an n-InSb system with polar
optic phonon and impurity scatterings, and with electron density r equal to the impurity
density n; = 1 x 10" cm—>. Therefore, up to this electric field strength, the Hall factor y
is essentially the same as that of zg = 0 and the field variation of y results almost solely
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from the electron temperature, which increases from 77K to about 400K with an increase
in the field strength from 10 to 400V ecm~!. However, the Monte Carlo investigation of
[16] yielded a Hall factor, which is larger than 1 at low electric fields and becomes 1 at
higher electric fields, and is thus in disagreement with the present result. For a Kane band,
our prediction that p is nearly 1 at low fields and less than 1 at higher fields, is physically
more reasonable. Since at such a small electron density only states in a very small region
of the k-space around the Kane band bottom are occupied at 77 K, then in and low eleciric
fields, the system behaviour should be close to a parabolic band for which y is unity.

The authors wish to thank the National Natural Science Foundation of China and the National
Comunission of Science and Technology of China for support of this work.
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