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LETTER TO THE EDITOR 

The Wall factor of hot-electron transport in non-parabolic 
Kane bands 
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A b m c t  Balance equations of hot-caniertransport have recently been developed forelemons 
in an arbitrary energy band in crossed electric and magnetic fields. It is shown thaf these 
equations provide a very convenient tool to deal with semiclassical magneto-hot-elechon 
transport in non-parabalic systems. As an example. Hall factors of namow-gap semiconductors 
with Kane band shllctwes are obtained by directly calculating Ihe y-coefficients in the equations. 
The predictions, which ax sensitive to band non-parabolicity, are compared with an earlier 
experiment and Monte Carlo analysis. 

The Lki-Ting balance equation approach [l] has been shown to be a useful tool for studying 
electron transport in three and quasi-two-dimensional semiconductor systems 12-1 11. It 
provides a much more tractable method to analyse carrier conduction under the influence 
of crossed magnetic and electric fields than direct solution of the Boltnnann equation or 
use of the Kubo formula [2, 101. Although the original balance equations were developed 
for electrons moving in a parabolic band, they have recently been extended to systems with 
a general energy dispersion in an electric field [121 and in crossed magnetic and electric 
fields [13]. The purpose of this letter is to point out that these newly extended balance 
equations provide a very convenient tool to deal with semiclassical magneto-hot-electron 
transport in a non-parabolic system. As an example, we apply them to calculate the Hall 
factor of narrow-gap semiconductors with Kane band structure. 

Consider N interacting electrons moving within an isotropic, non-parabolic Kane band 
[U]: 

(1) 

where k is the wavevector, m is the electron effective mass at the conduction hand bottom 
of the narrow-gap semiconductor, and 

1 ~ ( k )  = ~ [ ( l +  4 ( ~ k ~ / 2 m ) ” ~  - 11 

(2) 

is the non-parabolicity coefficient; sg being the energy gap between the conduction and 
valence bands. 

In the balance equation method the transport state of a many-electron system under the 
influence of an electric field in the x-y plane, E = (Ex ,  E,,. 0), and a magnetic field in 
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the z-direction, B = (0.0, B ) ,  is characterized by a centreofmass momentum P d  Npd, 
p d  = ( p x ,  p , ,  0). and an electron temperature T,. The average velocity of the centre of 
mass, or the average drift velocity of electrons, Vd = (us, U,. 0). is given by 

where f(e, T,) 
being the chemical potential to be determined by the total number of carriers: 

l/[exp(s - p)/T. + I] is the Fermi function at temperature TE with p 

N = 2c f(e(k), G). (4) 

The centre of mass is a single particle, having charge N e  and inverse effective mass tensor 
K / N ,  Ki j  = l / m ;  ( i .  j = x ,  y, z), given by 

k 

(5) 
2 

K = N C V . V E ( k ) f ( E ( I C - - d ) ,  Z). 
k 

In addition, to describe the centre-of-mass motion in this crossed magnetic and electric 
field configuration, we need four more dimensionless coefficients, yX,,,, yx,xY, yY.xy,  
defined by (a, b, c = x ,  y) 

Here = as(k)/ak,, = aZs(k)/ak,akb and the bracket (...) stands for the average 

The equations of motion of the centre of mass in crossed magnetic and electric fields take 
the form 1141 

du, - , e E ,  eE, eBu, eBv, ---+-+- Yy.ry - --Yx. YY + A,. 
dt m;, m;, m;, “;Y 

These two equations, together with the energy balance equation 

(10) 
form a complete set of equations for the determination of parameters p x ,  pY and Te. and 
then all the major physical quantities (such as the drift velocities U, and U,) of transport 
in crossed magnetic and electric fields. In the above equations he is the average electron 
energy, A = (Az, A,, 0) is the frictional acceleration due to impurity (Ai) and phonon 
(Ap) scatterings, and W is the energy-loss rate per carrier from the electron system to the 
phonon system [141. 

Note that when both momentum components pz and p y  (thus both drift velocity 
components U, and U,) are not zero, the non-diagonal elements of the inverse effective 
mass tensor, I,”;, and I/m;x, are finite. However, choosing the x-axis to be the velocity 
direction, Vd = (ud, 0.0) and pd = (Pd, O,O), we have l/m:, = l / n ~ ; ~  = 0, and the 
steady-state force balance equations can be reduced to 

dhe - = eE,u, +eE,v, - W 
dt 

-+AA,  = O  
m:, 
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This set of equations facilitates determination of the steady-state Hall resistivity under hot- 
electron conduction. Since the current density (in the x-direction) is given by 

j ,  = (13) 
where n is the electron number density and e is the electron charge. The (non-linear) 
longitudinal resistivity, defined as pxx = Ex/ j z ,  is obtained from equation(l1): 

On the other hand, the electric field along the y-direction is determined by equation(l2): 

E y  = B ' J d Y x . y y .  (15) 

This yields the non-hear transverse (Hall) resistivity 

and the Hall coefficient in this configuration 

or the Hall factor 

Y = YX.YY' (18) 
Apparently, it is independent of the direction of the current flow for this isotropic Kane 
band. However, in addition to the energy dispersion of the system, the Hall factor depends 
on the centre-of-mass momentum pd and the electron temperature 5. and thus depends on 
the applied electric field, the scatterings in the system, and the lattice temperature, as well as 
the magnetic field. In a parabolic band, V * Vs(k) = Z / m  (constant), all the y-coefficients 
defined by equation (6). and thus the Hall factor y ,  are unity under both linear and non- 
linear transport for an arbitrary electron density at low and high temperatures. Therefore, 
any deviation of y from unity must result from non-parabolicity. 

To see how the Hall factor changes with temperature, we plot in figures 1 and 2 the 
weak electric field (Zd  - 0) y as a function of electron temperature Te for non-parabolic 
Kane bands with different non-parabolicity coefficient and band bottom effective mass for 
varying electron density. Figure 1 (or = 0.613 eV-I and m = O.O67m,) corresponds to an 
n-GaAs Kane band. Figure2 (or = 4.32eV-' and m = O.O138m,) corresponds to an n-InSb 
Kane band. For comparison we also show the corresponding y for the respective Kane 
band with or = 0.01 eV-' at n = 2 x lOI4 C I I - ~  (dashed line in each figure). Such a weak 
non-parabolicity implies that it represents an almost parabolic system. Indeed, for this case, 
y = 1 except in the highest-temperature region. In strictly parabolic bands, of course, y = 1 
is independent of temperature. Since the deviation of a Kane band from the corresponding 
parabolic band is proportional to the square of the wavevector, k, the non-parabolic effect 
should appear to be stronger when higher wavevector states are occupied, i.e. at higher 
electron density or at higher electron temperature. For sufficiently low electron density 
and sufficiently low electron temperature a Kane band should behave parabolically. This 
is indeed the case, as can be seen in figures 1 and 2, where for the lowest electron density 
shown in these figures, n = 2 x 10'4cm-3, the value of y always approaches a limit very 
close to unity. 
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Figure 1. Temperamre dependence ofthe Hall factory of an electron system with n-GaAs Kane 
band (or = 0.613eV-' and m = 0.067m.). having different electron densities n. The dashed 
curve indicates the wrresponding Y for a Kane band with a = 0.01 eV-' and m = 0.067m, at 
n = 2 x  1 0 ~ ~ ~ m - 3 .  
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Figure 2. Tempemre dependence of the Hall factor y of an electron system with n-InSb Kane 
band (cl = 4.32eV-1 and m = 0.0138me), having different electron densities n. The dashed 
curve indicates the wrresponding y for a Kane band with a = 0.01 eV-' and m = 0.0138m. 
at n = 2 x 1014 cm-'. 

The Hall factor, y ,  introduced here depends on the momentum shift Pd, thus y changes 
with changing the strength of the current flow in the system. For convenience the momentum 
shift will be representated by a dimensionless quantity 

In figures 3 and 4 we plot the calculated y as a function of electron tgnperature & for 
several different values of a ranging from 0-5 for an n-InAs Kane band (E = 2.73 eV-' 
and m = 0.0138m.) at electron density n = 1 x lOI9  c r r 3  (figure3) and n = 2 x lOI4 
(figm4). 
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Figure 3. Calculated Hall factor y as a function of electron temperature T. at different given 
momentom shift z,j = 0, 0.5, 1.0, 2.0, 3.0 and 5.0, for an n - h h  Kame band (a = 2.73eV-I 
and m = 0.0138+) with electron density n = 1 x 10'9cm-3. 
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Figure 4. Calculated Hall factor y as a function of electron t e m p "  T. at different given 
momentum shin: zd = 0, 0.5, 1.0, 2.0, 3.0 and 5.0, for an U-hAs Kane band (Q = 2.73eV-' 
and m = O.O13&n,) with eleckon density n = 2 x l O " ~ m - ~ .  

There were many experimental and theoretical investigations on hot-electron 
galvanomagnetic conductions in narrow-gap semiconductors. As examples we would l i e  
to mention the experimental measurement of Alberga 1151 and the Monte Carlo calculation 
of Warmenbol et al [16] on the Hall effect of n-type InSb. Both the experiment and the 
theory report a Hall factor decreasing by about 10% with increasing the applied electric 
field from 10 V cm-' to 4M)V cm-I. The temperature dependence of y exhibited in the 
n = 2 x 1OI4 curve in figure2 is in agreement with this finding. As a matter of fact, 
numerical analysis of the steady-state balance equations determines that at an applied field 
of 4oOV cm-' the momentum shift Zd is less than 0.1, for an n-InSb system with polar 
optic phonon and impurity scatterings, and with electron density n equal to the impurity 
density ni = 1 x 1016cm-3. Therefore, up to this electric field strength, the Hall factor y 
is essentially the same as that of Zd = 0 and the field variation of y results almost solely 
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from the electron temperature, which increases from 77K to about 400K with an increase 
in the field strength from 10 to 400V cm-'. However, the Monte Carlo investigation of 
[16] yielded a Hall factor, which is larger than 1 at low electric fields and becomes 1 at 
higher electric fields, and is thus in disagreement with the present result. For a Kane band, 
our prediction that y is nearly 1 at low fields and less than 1 at higher fields, is physically 
more reasonable. Since at such a small electron density only states in a very small region 
of the k-space around the Kane band bottom are occupied at 77 K, then in and low electric 
fields, the system behaviour should be close to a parabolic band for which y is unity. 

The authors wish to thank the National Natural Science Foundation of China and the National 
Commission of Science and Technology of China for support of this work. 
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